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THERMOMECHANICAL BEHAVIOR OF ELECTRICALLY CONDUCTING SOLIDS

EXPOSED TO AN EXTERNAL ELECTROMAGNETIC FIELD

UDC 539.3: 538.3: 536.21: 518.12B. D. Drobenko

This paper describes a procedure for the mathematical and numerical modeling of the thermomechan-
ical behavior of electrically conducting solid bodies exposed to an external electromagnetic field. The
constitutive equations for the electromagnetic field are the Maxwell equations written for the region
of the solid body and the ambient medium. The stress–strain state of the solid is described using
the relations for nonisothermal elastoplastic flow. The effects of the electromagnetic field on the
heat-transfer and deformation processes are taken into account via heat release and ponderomotive
forces, respectively. The relations between the electric and magnetic inductions and the corresponding
field strengths are considered nonlinear. All physicomechanical parameters of the body material are
temperature dependent.

Key words: thermomechanics of electrically conducting solids, coupled fields, high-temperature
induction heating.

Introduction. Electromagnetic fields (EMFs) are widely used in modern solid-processing technologies, in
particular, for induction heating intended to increase the strength and reliability. Existing computational mod-
els of such heating examine predominantly coupled electromagnetic and thermal processes [1–5] or in some cases,
together with mechanical processes [6, 7], using a number of simplifications for the interaction of the processes
(nonferromagnetic materials, temperature-independent characteristics, and elastic deformation). In the cases where
the solids are heated to high temperatures, such models can lead to both quantitative and qualitative consider-
able errors. Thus, for example, steels undergo predominantly plastic deformation even at temperatures of about
550–600◦C because of the temperature dependence of the elastic limit [8]. In the heating range of 20 to 1000◦C
the electric conductivity of steel can vary by a factor of 6 to 8. At the Curie temperature, ferromagnetic mate-
rials generally lose ferromagnetic properties and their heating is considerably slowed down. Therefore, there is a
practical need for the development of mathematical models that would provide a more realistic description of the
interaction of the examined fields of various natures in a solid body exposed to an external EMF in a wide range
of temperatures taking into account the nonlinearity of the electromagnetic, thermal, and mechanical properties of
the body material.

The present paper describes a procedure for the mathematical and numerical modeling of the thermome-
chanical behavior of electrically conducting temperature-sensitive solids exposed to an external EMF taking into
account the elastoplastic nature of the deformation and the nonlinear dependence between the electric and magnetic
inductions and strengths.

1. Formulation of the Problem. We consider an electrically conducting axisymmetric body V in which
there are no extraneous electric charges and currents. The body is exposed to an EMF generated by a system of
currents located outside the body j(0)(r, z, t) = (0, j

(0)
ϕ (r, z, t), 0) (r, ϕ, and z are cylindrical coordinates). The

problem is to determine the electromagnetic and temperature fields due to this effect and the mechanical stresses
in the body. The electromechanical, thermoelectric, and magnetostriction effects are considered insignificant and
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the electric and magnetic inductions and strengths are considered parallel.
For the equations of state

B(1) = B∗(H(1), T ), D(1) = D∗(E(1), T ),

j(1) = γE(1), B(0) = µ0H
(1), D(0) = ε0E

(0),
(1.1)

the electromagnetic and temperature fields are described by the following equations [6]:

rotH(m) =
∂D(m)

∂t
+ j(m), rotE(m) = −∂B(m)

∂t
; (1.2)

c
∂T

∂t
= ∇ · (λ∇T ) + j(1)E(1). (1.3)

Here H = (Hr(r, z, t), 0, Hz(r, z, t)) and E = (0, Eϕ(r, z, t), 0) are the magnetic- and electric-strength vectors,
B = (Br(r, z, t), 0, Bz(r, z, t)) and D = (0, Dϕ(r, z, t), 0) are the magnetic and electric inductions, the quantities
with the superscript m = 0 refer to the ambient medium (whose electromagnetic properties are described in a
vacuum approximation), and those with the superscript m = 1 refer to the region of the body, B∗(H(1), T ) and
D∗(E(1), T ) are functions that specify the relations between the induction and strength vectors of the magnetic and
electric fields, respectively in the body, j is the current density, γ = γ(T ) is the electric conductivity of the body,
ε0 and µ0 are the dielectric and magnetic permeabilities of vacuum, ∇ is the Hamiltonian, c = c(T ) is the volume
specific heat, and λ = λ(T ) is the thermal conductivity.

The Maxwell equations (1.2) can be reduced to a system of equivalent relations for one of the functions —
E or H . Let us write these equations for E. With allowance for (1.1), Eqs. (1.2) for the body become

rotH(1) = ε
∂E(1)

∂t
+

∂D∗
∂T

∂T

∂t
+ γE(1), rotE(1) = −[µ∗]

∂H(1)

∂t
− ∂B∗

∂T

∂T

∂t
. (1.4)

Here

[µ∗] =
[

µr 0
0 µz

]
; µr =

∂B∗r

∂H
(1)
r

, µz =
∂B∗z

∂H
(1)
z

; ε =
∂D∗ϕ

∂E
(1)
ϕ

.

We multiply the second equation (1.4) by [µ∗]−1, performing the operation rot on both of its sides, and
substitute the first equation of (1.4) into the relation obtained. Then, for the single nonzero component of the
electric strength vector E(1) in the body, we obtain the equation

− ∂

∂r

( 1
µz

1
r

∂

∂r
(rE(1)

ϕ )
)
− ∂

∂z

( 1
µr

∂E
(1)
ϕ

∂z

)
+

∂γ

∂t
E(1)

ϕ + Fq
∂E

(1)
ϕ

∂t
+ ε

∂2E
(1)
ϕ

∂t2
= Fp, (1.5)

where the following notation is used:

Fq = γ +
2 ∂2D∗ϕ

∂E
(1)
ϕ ∂T

∂T

∂t
+

∂2D∗ϕ

∂E
(1)2
ϕ

∂E
(1)
ϕ

∂t
;

Fp = −∂2D∗ϕ

∂T 2

(∂T

∂t

)2

− ∂D∗ϕ

∂T

∂2T

∂t2
+

∂

∂r

( 1
µz

∂B∗z

∂T

∂T

∂t

)
− ∂

∂z

( 1
µr

∂B∗r

∂T

∂T

∂t

)
.

In the following, we restrict ourselves to the case of an isotropic body: µr = µz = µ.
We note that for quasisteady-state external electromagnetic effects, the effect of bias currents in the region

of the electrically conducting body can be ignored compared to conduction currents [6]. In this case, Eq. (1.5)

becomes parabolic (the term with the second time derivative vanishes); Fp =
∂

∂r

( 1
µ

∂B∗z

∂T

∂T

∂t

)
− ∂

∂z

( 1
µ

∂B∗r

∂T

∂T

∂t

)
and Fq = γ.

The corresponding equation for the ambient medium is written as

− 1
µ0

( ∂

∂r

(1
r

∂

∂r
(rE(0)

ϕ )
)
− ∂

∂z

(∂E
(0)
ϕ

∂z

))
+ ε0

∂2E
(0)
ϕ

∂t2
= −∂j

(0)
ϕ

∂t
. (1.6)
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For the known electric strength E in the body–ambient-medium system, the magnetic induction is determined
from the relation

B(m)
r =

t∫
0

∂E
(m)
ϕ

∂z
dt′, B(m)

z = −
t∫

0

1
r

∂(rE(m)
ϕ )

∂r
dt′. (1.7)

The constraints on the EMF characteristics at the interface between the body S and the ambient medium
are usually specified based on the Maxwell equations in integral form. In the absence of surface currents, these
equations yield two independent conditions that define the equality of the tangential components of the electric and
magnetic strength vectors [7]. For the case considered, these conditions are written in the functions E as follows:

E(1)
ϕ = E(0)

ϕ ; (1.8)

(
µ−1 1

r

∂ (rE(1)
ϕ )

∂r
− µ−1

0

1
r

∂ (rE(0)
ϕ )

∂r

)
nr +

(
µ−1 ∂E

(1)
ϕ

∂z
− µ−1

0

∂E
(0)
ϕ

∂z

)
nz = 0, (1.9)

where n = (nr, nz) is the outward normal vector to the surface S.
We assume that the body is under conditions of convective heat transfer through the surface S with the

ambient medium, whose temperature is TS :

λn · ∇T + β(T − TS) = 0. (1.10)

Here β = β(T ) is the heat-transfer coefficient.
The conditions at infinity and on the Oz axis are written as

1
r

∂ (rE(0)
ϕ )

∂r
nr +

∂E
(0)
ϕ

∂z
nz = 0; (1.11)

Eϕ = 0. (1.12)

At the initial time, there is no EMF in the body and the ambient medium and the initial temperature
distribution T0(r, z) is specified in the body.

The problem of determining the EMF in the body–ambient-medium system and the temperature distribution
in the body reduces to solving Eqs. (1.3) and (1.5) for the body and Eq. (1.6) for the ambient medium subject
to zero initial conditions on the electric strength, the specified initial temperature distribution T0(r, z), conditions
(1.8)–(1.10) at the interface between the body the and ambient medium, conditions (1.11) at infinity and (1.12) on
the Oz axis. The magnetic-induction components B are obtained from relation (1.7), the electric induction D, and
the magnetic strength H , the differential dielectric permeability ε, and the magnetic permeability µ in the body
are determined using the phenomenological relations (1.1).

If in determining the EMF, we use magnetic strength H as the computational function, then instead of one
Eq. (1.5) we obtain two equations [for the unknowns Hr(r, z, t) and Hz(r, z, t)], which should be solved simulta-
neously with Eq. (1.3). However, for a long electrically conducting cylindrical body under steady-state external
electromagnetic action independent of the z coordinate, one nonzero component Hz is retained, for which, ignoring
bias currents in the body, we obtain the equation

1
r

∂

∂r

(
r

1
γ

∂H
(1)
z

∂r

)
− µ

∂H
(1)
z

∂t
=

∂B∗z

∂T

∂T

∂t
. (1.13)

For the specified H
(1)
z on the surface, the problem of determining the EMF and temperature in this case

reduces to solving Eqs. (1.13) and the equation

c
∂T

∂t
=

1
r

∂

∂r

(
λr

∂T

∂r

)
+ j(1)

ϕ E(1)
ϕ

(
E(1)

ϕ =
1
γ

∂H
(1)
z

∂r

)
(1.14)

with zero initial conditions on the magnetic strength, the specified initial temperature distribution T0(r, z), condi-
tions of convective heat transfer on the cylinder surface (for r = R), and the conditions

∂T

∂r
= 0,

∂H
(1)
z

∂r
= 0 at r = 0. (1.15)
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In the proposed computational model with the assumptions made above, the dynamic effect of the EMF
on the electrically conducting body reduces to the action of ponderomotive forces [6], which vanish except for the
Ampère force F A and the force F M exerted by the field on molecular currents, whose components are given by the
relations

FA
r = γE(1)

ϕ B(1)
z , FA

z = −γE(1)
ϕ B(1)

r ,

FM
r =

( 1
µ0

B(1)
r − H(1)

r

)∂B
(1)
r

∂r
+

( 1
µ0

B(1)
z − H(1)

z

)∂B
(1)
z

∂r
,

FM
z =

( 1
µ0

B(1)
z − H(1)

z

)∂B
(1)
z

∂z
+

( 1
µ0

B(1)
r − H(1)

r

)∂B
(1)
r

∂z
.

The temperature field and the ponderomotive forces obtained from the solution of the coupled problem of
electrodynamics and heat conduction F = F A + F B are the basic parameters for determining the stress state of
the body.

The stress–strain state of the body is analyzed using the relations for nonisothermal elastoplastic flow [9],
according to which the deformation process is considered by steps. Starting with the specified values at t = 0,
the ponderomotive forces and the temperature distribution in the body change by corresponding increments in
each loading step, so that by the end of the deformation process they take the final values. In each step, using
the specified increments of these forces and the temperature, we determine the displacement, strain, and stress
increments, which are added to those obtained in the previous steps. Thus, step by step, we obtain the history of
variation in the thermomechanical state of the body.

Let us consider the next loading step. Plastic deformation starts when a point in the stress space reaches
the yield surface

Φ(σij − oij) = K2
(∫

dεp
i , T

)
, (1.16)

where σij are the stress-tensor components, oij are the coordinates of the center of the yield surface, K2 is a function
that specifies the dimension of the yield surface as a function of the temperature and the accumulated plastic strain∫

dεp
i , and dεp

i =
√

(2/3) dεp
ij dεp

ij is the rate of increment in the plastic strain. As the criterion of transition to

plasticity, we use the Mises condition, for which the yield function is

Φ(σij − oij) =
√

(3/2)sijsij , sij = σij − oij − (1/3)δij(σij − oij). (1.17)

Here δij is the Kronecker delta.
The stress increment for a loading step is written as

dσij = Gt+dt
ijkl (dεkl − dεT

kl − dεp
kl) + dGijkl(εkl − εT

kl − εp
kl). (1.18)

Here Gt+dt
ijkl and dGijkl are the components of the elastic modulus tensor at the time t+dt (at the end of the loading

step) and their increments (as functions of temperature) in the given step; εkl, εT
kl, and εp

kl are components of the
total-, temperature-, and plastic-strain tensors, respectively, at the time t (at the beginning of the step).

The plastic strain increments are determined using the associated plastic flow law on the development of
plastic strains normal to the yield surface:

dεp
ij = dχ

∂Φ
∂σij

. (1.19)

The temperature-strain increment is given by

dεT
ij = δij(αt+dt dT + (αt+dt − αt)(T − T0)), (1.20)

where α is the thermal-expansion coefficient.
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With allowance for relations (1.16)–(1.20), the relations between the stress and strain increments become [9]

dσij =

(
Gt+dt

ijmn −
Gt+dt

ijvw

∂Φ
∂σvw

∂Φ
∂σkl

Gt+dt
klmn

2
3

Ht ∂Φ
∂σpq

∂Φ
∂σpq

+ Gt+dt
pqrs

∂Φ
∂σpq

∂Φ
∂σrs

)
(dεmn − dεT

mn)

+

(
dGijmn −

Gt+dt
ijvw

∂Φ
∂σvw

∂Φ
∂σkl

dGklmn

2
3

Ht ∂Φ
∂σpq

∂Φ
∂σpq

+ Gt+dt
pqrs

∂Φ
∂σpq

∂Φ
∂σrs

)
(εmn − εp

mn − εT
mn)

+

√
2
3

∂Φ
∂σkl

∂Φ
∂σkl

Gt+dt
ijmn

∂Φ
∂σmn

∂σi

∂T

2
3

Ht ∂Φ
∂σpq

∂Φ
∂σpq

+ Gt+dt
pqrs

∂Φ
∂σpq

∂Φ
∂σrs

dT

or, in matrix-vector form,

{dσ} = [G]t+∆t({dε} − {dεT }) + [dG]({ε}t − {εT}t − {εp}t) + {Z} dT. (1.21)

Here Ht is the slope of the curve of equivalent stresses σi versus equivalent plastic strains εp
i ; {ε}

= {εrr, εϕϕ, εzz, 2εrz}′, {σ} = {σrr, σϕϕ, σzz, σrz}′ (the prime denotes the transposition operation). We note that
the appearance of the last two terms in Eq. (1.21) is due to the temperature dependence of the elastic properties
and yield strength of the material.

We close the above system of equations by geometrical relations, restricting ourselves to the case of small
strains, and the equilibrium equations [10]

{ε} = [A]u; (1.22)

[A]′ · {σ} − F = 0 (1.23)

with the known boundary conditions in displacement and stresses

([Σn]{σ} − p)
∣∣∣
Sσ

= 0, u
∣∣∣
Su

= u(0), Su ∪ Sσ = S, Su ∩ Sσ = Ø. (1.24)

Here p and u(0) are the external loading vectors specified on the surface Sσ and the displacement vectors u = (ur, uz)
specified on the surface Su;

[A] =
[

∂/∂r 1/r 0 ∂/∂z

0 0 ∂/∂z ∂/∂r

]′
, [Σn] =

[
nr 0 nz 0
0 nz nr 0

]′

are the matrices of the differential operator of the geometrical relations of elastic theory and the direction cosines
of the normal to the surface S [10].

Thus, according to the proposed computational scheme, the problem of determining the stress–strain state of
an electrically conducting solid body exposed to an external EMF is solved in two steps and consists of solving the
coupled problem of electrodynamics, heat conduction, and thermal elasticity. In the second step, the displacement,
strain, and stress are determined from the equilibrium equations (1.23), geometrical relations (1.22), and the
equations of state (1.21) with boundary conditions (1.24) using the values of the temperature and ponderomotive
forces obtained in the first step.

2. Solution Procedure. The formulated problem is solved using the finite-element method in the version
of the method of weighted residuals [10]. Let us write the constitutive relations of the method for the coupled
problem of electrodynamics and heat conduction. For this, we multiply the heat-conduction equation (1.3) by an
arbitrary weight function w ∈ H1(V ) [Sobolev’s space H1(V ) = {w ∈ L2(V ), ∇w ∈ L2(V )}] and integrate the
obtained relation over the domain V . Using the Green formula and the heat-transfer condition (1.10), we obtain∫

V

(
c

∂T

∂t
w + λ

(∂T

∂r

∂w

∂r
+

∂T

∂z

∂w

∂z

)
− j(1)

ϕ E(1)
ϕ w

)
r dr dz +

∫
S

β(T − Tc)wr dξ = 0. (2.1)
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We apply the same approach to Eqs. (1.5) and (1.6), previously replacing the infinite space in it by a finite
domain V∗ (V ⊂ V∗) bounded by a surface S∗ remote from the body and the currents considered. Using the Green
formula we obtain the relations∫

V

µ−1
(1

r

∂ (rE(1)
ϕ )

∂r

1
r

∂ (rw1)
∂r

+
∂E

(1)
ϕ

∂z

∂w1

∂z

)
r dr dz

+
∫
S

µ−1
(1

r

∂ (rE(1)
ϕ )

∂r
nr +

∂E
(1)
ϕ

∂z
nz

)
w1r dξ

+
∫
V

(∂γ

∂t
E(1)

ϕ + Fq
∂E

(1)
ϕ

∂t
+ ε

∂2E
(1)
ϕ

∂t2
− Fp

)
w1r dr dz = 0 ∀ w1 ∈ H1(V∗);

∫
V∗\V

µ−1
0

(1
r

∂ (rE(0)
ϕ )

∂r

1
r

∂ (rw1)
∂r

+
∂E

(0)
ϕ

∂z

∂w1

∂z

)
r dr dz

+
∫

V∗\V

ε0
∂2E

(0)
ϕ

∂t2
w1r dr dz −

∫
S

µ−1
0

(1
r

∂ (rE(0)
ϕ )

∂r
nr +

∂E
(0)
ϕ

∂z
nz

)
w1r dξ

+
∫

V∗\V

∂jϕ

∂t
w1r dr dz = 0 ∀ w1 ∈ H1(V∗). (2.2)

Here H1(V∗) = {w ∈ H1(V∗): w = 0 ∀ (0, z) ∈ V∗}. Satisfying boundary conditions (1.12), the weight function on
the Oz axis vanishes. The minus sign appears in relation (2.2) because n is an inward (with respect to the ambient
medium V∗ \ V ) normal to the surface S. The integral over S∗ vanishes by virtue of boundary conditions (1.11).

Using conditions (1.9), we arrive at the following unified relation for the problem of electrodynamics written
for the entire domain V∗: ∫

V∗

µ−1
c

(1
r

∂ (rEϕ)
∂r

1
r

∂ (rw1)
∂r

+
∂Eϕ

∂z

∂w1

∂z

)
r dr dz

+
∫
V∗

(
γtEϕ + Fc

∂Eϕ

∂t
+ εc

∂2Eϕ

∂t2
+ Fd

)
w1r dr dz = 0 ∀ w1 ∈ H1(V∗). (2.3)

Here the following notation is introduced: for the region of the body V ,

µc = µ; εc = ε; γt =
∂γ

∂t
; Fc = Fq; Fd = −Fp; Eϕ = E(1)

ϕ ;

for the ambient medium V∗ \ V ,

µc = µ0; εc = ε0; γt = 0; Fc = 0; Fd =
∂jϕ

∂t
; Eϕ = E(0)

ϕ .

Let us perform the standard procedure of finite-element discretization of relations (2.1) and (2.3) over the
spatial variables [10]. In this case, the domain V∗ is partitioned in such a manner that the interface between the
body and the ambient medium coincides with the boundaries of the corresponding finite elements. As a result, we
obtain the system of ordinary differential equations

[L1]{Ṫh(t)} + [L0]{Th(t)} = {fT }, {Th(0)} = {T 0
h}; (2.4)

[M2]{Ëh(t)} + [M1]{Ėh(t)} + [M0]{Eh(t)} = {fE}, {Eh(0)} = 0, {Ėh(0)} = 0 (2.5)
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for the unknown temperature {Th} and electric strength {Eh} at the partition nodes. The matrix-vector character-
istics of the obtained system of equations are calculated by summing the corresponding characteristics of individual
finite elements:

[L0]el =
∫

V el

λ
([∂N

∂r

]′[∂N

∂r

]
+

[∂N

∂z

]′[∂N

∂r

])
r dr dz +

∫
Sel

β[N ]′[N ]r dξ,

[L1]el =
∫

V el

c[N ]′[N ]r dr dz, {fT}el =
∫

V el

j(1)
ϕ E(1)

ϕ [N ]′r dr dz +
∫

Sel

β[N ]′r dξ,

[M0]el =
∫

V el∗

1
µc

([∂N

∂r

]′[∂N

∂r

]
+

[∂N

∂z

]′[∂N

∂z

])
r dr dz +

∫
V el∗

γt[N ]′[N ]r dr dz

+
∫

V el∗

1
µc

1
r

([∂N

∂r

]′
[N ] + [N ]′

[∂N

∂r

]
+

1
r

[N ]′[N ]
)
r dr dz,

[M1]el =
∫

V el∗

Fc[N ]′[N ]r dr dz, [M2]el =
∫

V el∗

εc[N ]′[N ]r dr dz, {fE}el =
∫

V el∗

Fd[N ]′r dr dz.

Here [N ] = [N1, N2, . . . , Nl], [∂N/∂r], [∂N/∂z] are the matrices of the shape functions and their derivatives and l is
the number of finite-element nodes.

The Cauchy problem (2.4), (2.5) is solved using the family of simple one-step multiparameter algorithms
known as the Zienkiewicz–Wood method [11]. In this case, the temperature dependences of the electrophysical and
thermal characteristics and the dependences of the electric and magnetic inductions on the corresponding strengths
are approximated by interpolation splines constructed on the basis of real curves that describe the solid body
behavior in EMF.

For the case of a long cylinder, problem (1.13)–(1.15) is solved similarly.
Using the known parameters describing the EMF in the body, we calculate the ponderomotive forces and

pass to the second step of the solution of the problem.
Let us write the basic finite-element relations for the thermoelastic problem. With allowance for the equi-

librium of the stress state at the beginning of the loading step, the incremental stress equilibrium equation for the
body becomes [10]

[A]′{dσ} − {dF } = 0. (2.6)

Substituting the physical relations (1.21) and geometrical relations (1.22) into (2.6), using the standard procedure
of the method of weighted residuals, and introducing finite-element approximations, we obtain the incremental
displacement equilibrium equation [10]

[Kep]{dq} = {dF } + {dP } + {dR},
which is solved using the method of variable rigidity parameters [10]. Here {dq} is the global vector of nodal-
displacement increments; the matrix-vector characteristics [Kep], {dF }, and {dP } are obtained by summing up the
corresponding characteristics of individual elements:

[K(el)
ep ] =

∫
V el

[N ]′[A]′[C]tj+∆tj [A][N ]r dr dz,

{dP }(el) =
∫

V el

[N ]′[A]′([dC]({ε} − {εT } − {εp}) + {z} dT )r dr dz +
∫

S
(el)
σ

[N ]′{dp}r dξ,

{dR(el)} =
∫

V el

[N ]′[A]′[A][N ]{dεT }r dr dz, {dF (el)} =
∫

V el

[N ]′{dF }r dr dz.
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Fig. 1. Standard finite-element meshes.

Fig. 2. Stress intensity in a cylinder of Kh18N9T steel (t = 7.1 sec): the numbers at the lines refer
to σ (σ in MPa).

The proposed technique was used to design the corresponding software for modeling the interaction of
electromagnetic, temperature, and mechanical fields in an electrically conducting body exposed to an external EMF
and to solve a number of particular problems.

3. Induction Heating of a Cylinder. As an example, we consider the induction heating a steel cylinder
of length 2L and radius R free from dynamic loading. The cylinder is in an inductor which is coaxial with it and
is modeled by a cylindrical surface of radius Ri and length 2Li. The current flowing in the inductor has density

j(0)(r, z, t) = (0, J0 sin (2πωt), 0), r = Ri, |z| � Li, (3.1)

where ω is the frequency.
To study the convergence of the numerical schemes, we solved the problem using finite-element meshes of

various densities with various integration time steps, and various dimensions of the domain V∗. The results were
compared with known analytical solutions.

Figure 1 shows the standard meshes of isoparametric biquadratic eight-nodal elements used in the calculations
[10] (R = 0.01 m, L = 0.04 m, Ri = 0.012 m, Li = 0.042 m, R0 = 2.5R, and L0 = 2L).

3.1. Cylinder of Nonferromagnetic Kh18N9T Steel. The characteristics of the steel are known [7] (their
temperature dependence was ignored). The calculations were performed for J0 = 6 · 104 A/m2, ω = 3 · 105 Hz,
β = 167 W/(m2·K), and T0 = TS = 0◦C. The elastic limit was set equal to 220 MPa.

Figure 2 shows the stress intensity σi in the cylinder at t = 7.1 sec (the inductor-switching time in [7]). The
edge effect covers an area of dimension 2R. In the central part of the cylinder, the solution hardly depends on the
z coordinate. The stresses σrr, σzz , and σϕϕ in the equatorial section of the cylinder z = 0 are given in Fig. 3.
For comparison, the dashed lines in the same figure show known analytical solutions obtained in closed form for
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Fig. 3. Stresses in the cross section z = 0 of the cylinder (t = 7.1 sec).

Fig. 4. Stresses σϕϕ in the cylinder of S30 steel under heating: t = 0.007 (1), 0.02 (2), 0.04 (3),
0.06 (4), 0.08 (5), 0.10 (6), 0.12 (7), 0.14 (8), and 0.159 sec (9).
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Fig. 5. Stresses σϕϕ in the cylinder of S30 steel under cooling: t = 0.159 (1), 2.45 (2), and 20 sec (3).

Fig. 6. Residual stresses σϕϕ in a cylinder of S30 steel.

a long cylinder in [7]. In the scale of the figure, the solutions almost coincide. This agreement of the results is
obtained even for five eight-nodal elements on the radius of the cylinder (see Fig. 1b) and an integration time step
∆tE = ω−1/16.

It should be noted that the replacement of the external space by a domain V∗ with parameters R0 = 2.5R

and L0 = 2L (Fig. 1) does not influence the solution of the problem of electrodynamics and heat conduction: for
R0 > 2.5R and L0 > 2L, the solutions coincide with each other, and in the section z = 0, they are nearly identical
to the solution of the one-dimensional problem (1.13)–(1.15) for a long cylinder with the boundary condition
Hz = 6 · 104 sin (2πωt) A/m specified on the cylinder surface (for R0 < 2.5R and L0 < 2L, these solutions differ).

Because an analysis of the three fields of various natures with the same time step is ineffective from the point
of view of computing costs, the algorithm for solving the problem provides for the use of different integration time
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steps for the equations of electrodynamics, heat conduction, and elastoplasticity. In this case, the heat-conduction
and elastoplastic equations contain the heat releases and ponderomotive forces averaged over the electromagnetic-
wave oscillation period [12]. Thus, the solution of the problem obtained for an integration time step for the heat
conduction equation ∆tT = 2.367 sec and a load step ∆tM = 7.1 sec almost coincides with the solution for
∆tM = ∆tT = ∆tE .

3.2. Cylinder of Ferromagnetic S30 Steel. The electrical, thermal, and physicomechanical characteristics of
the steel and their temperature dependences are given in [5, 12–15]. The cylinder was heated by a current (3.1)
(J0 = 106 A/m2 and ω = 8 · 103 Hz). Once the outer layer of the cylinder 1.5 mm thick was heated to a
temperature T � 970◦C, the current was switched off and the cylinder was cooled by convective heat transfer
[β = 104 W/(m2·K)] with the ambient medium, whose temperature was TS = 20◦C [for heating, β = 13 W/(m2· K)];
T0 = TS.

An analysis of the results shows that when the outer layers of the cylinder are heated to the Curie temperature
(770◦C) and lose ferromagnetic properties, the maximum specific powers of the sources are shifted to the depth
of the cylinder and the main heat release occurs in the region where the material has not yet lost ferromagnetic
properties. In this case, the magnetic-field penetration depth increases during heating of the cylinder.

At the beginning of the heating process, compressing stresses arise in the surface layer and rapidly reach the
elastic limit (curve 1 in Fig. 4). When this layer loses ferromagnetic properties, the region of the main heat release
and maximum compressing stress is shifted to the interior of the cylinder (curves 2–9 in Fig. 4). As we can see, this
leads to unloading of the surface layer.

When the required heating depths is reached, the current is switched off (t = 0.159 sec). Rapid cooling of
the surface layer begins. In this layer, tensile stresses arise and rapidly increase, reaching the maximum at the time
t = 2.45 sec (curve 2 in Fig. 5). The inner layers are cooled more slowly. Reducing in size under cooling, they
contract the rapidly cooled surface layer and weaken the tensile stresses in it, whose maximum is shifted from the
surface to the interior of the cylinder. As a result, residual compressing stresses occur in the surface layer (curve 3
in Fig. 5).

Figure 6 shows the residual stresses σϕϕ in the cylinder are shown (curve 1). For comparison, the same
figure gives the residual stresses obtained ignoring the ferromagnetic properties of the material (with the magnetic
permeability averaged over the magnetic density; curve 2) and with the constant physicomechanical characteristics
averaged over the heating–cooling temperature range (curve 3).

Even at 300◦C, the temperature distributions obtained taking into account the temperature dependence of
the electrophysical characteristics begin to differ from the distributions calculated for the characteristics averaged
over the heating time. During further heating, the difference begins even more considerable and gains a qualitative
nature.

In this case, the effect of ponderomotive forces can be ignored. The maximum values of the dynamic stresses
due to body forces are not less than 1% of the maximum temperature stresses.

A numerical convergence study shows that allowance for the ferromagnetic properties and temperature
dependence of the material properties places far more stringent requirements on the discrete model. Thus, to
obtain fairly exact values of the magnetic-field strength, one needs 500 elements along the radius of the cylinder for
time steps ∆tE = ω−1/2500 and ∆tT = ω−1. To solve the elastoplastic problem, twenty finite elements along the
radius of the cylinder are sufficient. The load step was variable. As soon as the maximum rise in the temperature
at any point of the cylinder exceeded 15◦C, the displacement, strain, and stress increments for the specified loading
step were determined.

Conclusions. The above procedure for modeling thermomechanical processes in electrically conducting
solids exposed to an external EMF provides a more adequate prediction of the behavior of articles made of magnetic
materials over a wide range of temperatures. This is required for the automation of induction treatment, in
particular, to estimate residual stresses, which are the initial stresses in the development of operation modes.

In modeling the processes of high-temperature induction heating of articles made of ferromagnetic steels,
one needs to allow for the temperature dependence of the electric, thermal, and mechanical characteristics of the
material. Otherwise, one obtains qualitatively different distributions of process parameters.
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